Recent advances in the biology of heavy-ion cancer therapy.
نویسندگان
چکیده
Superb biological effectiveness and dose conformity represent a rationale for heavy-ion therapy, which has thus far achieved good cancer controllability while sparing critical normal organs. Immediately after irradiation, heavy ions produce dense ionization along their trajectories, cause irreparable clustered DNA damage, and alter cellular ultrastructure. These ions, as a consequence, inactivate cells more effectively with less cell-cycle and oxygen dependence than conventional photons. The modes of heavy ion-induced cell death/inactivation include apoptosis, necrosis, autophagy, premature senescence, accelerated differentiation, delayed reproductive death of progeny cells, and bystander cell death. This paper briefly reviews the current knowledge of the biological aspects of heavy-ion therapy, with emphasis on the authors' recent findings. The topics include (i) repair mechanisms of heavy ion-induced DNA damage, (ii) superior effects of heavy ions on radioresistant tumor cells (intratumor quiescent cell population, TP53-mutated and BCL2-overexpressing tumors), (iii) novel capacity of heavy ions in suppressing cancer metastasis and neoangiogenesis, and (iv) potential of heavy ions to induce secondary (especially breast) cancer.
منابع مشابه
Induction of cancer stem-like cells in A549 cells after exposure to carbon ions and X-rays
Background: Cancer stem-like cells (CSCs) play a crucial role in the initiation, progression, and recurrence of cancer. Evidence indicates that the high linear energy transfer (LET) carbon ion beam is more effective against CSCs than the conventional X-ray beam. Carbon ion radiotherapy is considered as a promising cancer strategy, however, information about whether, or not, new CSCs are induced...
متن کاملReview of mechanisms and recent advances in cancer photo thermal therapy
Abstract. Cancer is a major health problem all over the world. Photo thermal therapy (PTT) is a non-invasive method in cancer treatment. In PTT, the laser light usually in near-infra red region is absorbed and converted to heat in the cancerous tissue. The temperature above 40 ° C in PTT can induce some effects including irreversible damage to proteins, changes in enzyme struc...
متن کاملThe biological effects induced by high-charged and energy particles and its application in cancer therapy
The radiobiological effects of high atomic number and energy (HZE particles) ion beams are of interest for radioprotection in space and tumor radiotherapy. Space radiation mainly consists of heavy charged particles from protons to iron ions, which is distinct from common terrestrial forms of radiation. HZE particles pose a significant cancer risk to astronauts on prolonged space missions. With ...
متن کاملRecent advances in nanoformulations for co-delivery of curcumin and chemotherapeutic drugs
The application of chemotherapy in cancer treatment has been limited due to cause side effects such as toxicity against normal cells and drug resistance. In recent years, numerous studies have been focused on using natural products with chemotherapeutic drugs to enhance therapeutic efficiency and reduce cytotoxicity. On the other hand, encapsulation of drugs into nanoparticles (NPs) can improve...
متن کاملمقایسه تأثیر شیمیدرمانی استاندارد و اثر ترکیبی آن با Cetuximab بر میزان بقاء در مبتلایان به سرطان پیشرفته کولون
Background and Aim: Recent advances in molecular and cellular biology and the importance of Epidermal growth factor receptor(EGFR) in the development and progression of many solid malignancies such as Colorectal Cancer (CRC) and non- small cell lung cancer have allowed rapid advances in rational drug design and targeted therapies for malignancies.Cetuximab or Erbitux, an IgG1 monoclonal antib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of radiation research
دوره 51 4 شماره
صفحات -
تاریخ انتشار 2010